Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Nucl Med ; 65(3): 386-393, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272704

RESUMO

Radioimmunoconjugates targeting human epidermal growth factor receptor 2 (HER2) have shown potential to noninvasively visualize HER2-positive tumors. However, the stochastic approach that has been traditionally used to radiolabel these antibodies yields poorly defined and heterogeneous products with suboptimal in vivo performance. Here, we describe a first-in-human PET study on patients with HER2-positive breast cancer evaluating the safety, biodistribution, and dosimetry of 89Zr-site-specific (ss)-pertuzumab PET, a site-specifically labeled radioimmunoconjugate designed to circumvent the limitations of random stochastic lysine labeling. Methods: Six patients with HER2-positive metastatic breast cancer were enrolled in a prospective clinical trial. Pertuzumab was site-specifically modified with desferrioxamine (DFO) via a novel chemoenzymatic strategy and subsequently labeled with 89Zr. Patients were administered 74 MBq of 89Zr-ss-pertuzumab in 20 mg of total antibody intravenously and underwent PET/CT at 1 d, 3-4 d, and 5-8 d after injection. PET imaging, whole-body probe counts, and blood draws were performed to assess the pharmacokinetics, biodistribution, and dosimetry. Results: 89Zr-ss-pertuzumab PET/CT was used to assess HER2 status and heterogeneity to guide biopsy and decide the next line of treatment at progression. The radioimmunoconjugate was able to detect known sites of malignancy, suggesting that these tumor lesions were HER2-positive. The optimal imaging time point was 5-8 d after administration, and no toxicities were observed. Dosimetry estimates from OLINDA showed that the organs receiving the highest doses (mean ± SD) were kidney (1.8 ± 0.5 mGy/MBq), liver (1.7 ± 0.3 mGy/MBq), and heart wall (1.2 ± 0.1 mGy/MBq). The average effective dose for 89Zr-ss-pertuzumab was 0.54 ± 0.03 mSv/MBq, which was comparable to both stochastically lysine-labeled 89Zr-DFO-pertuzumab and 89Zr-DFO-trastuzumab. One patient underwent PET/CT with both 89Zr-ss-pertuzumab and 89Zr-DFO-pertuzumab 1 mo apart, with 89Zr-ss-pertuzumab demonstrating improved lesion detection and higher tracer avidity. Conclusion: This study demonstrated the safety, dosimetry, and potential clinical applications of 89Zr-ss-pertuzumab PET/CT. 89Zr-ss-pertuzumab may detect more lesions than 89Zr-DFO-pertuzumab. Potential clinical applications include real-time evaluation of HER2 status to guide biopsy and assist in treatment decisions.


Assuntos
Neoplasias da Mama , Imunoconjugados , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Lisina , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Prospectivos , Distribuição Tecidual , Anticorpos Monoclonais Humanizados/uso terapêutico , Imunoconjugados/uso terapêutico
2.
Clin Nucl Med ; 48(11): 937-944, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37812518

RESUMO

PURPOSE: 131I-MIP-1095 is a targeted radiotherapeutic that contains 131I, a ß-particle emitter, and MIP-1095, a urea-based ligand for prostate-specific membrane antigen. We report the first phase 1, dose-escalation study of 131I-MIP-1095 in patients with metastatic castration-resistant prostate cancer (mCRPC). METHODS: This study enrolled men with mCRPC refractory to second-generation antiandrogen(s) and taxane chemotherapy. Dosimetry/biodistribution assessments were performed. Safety and tolerability were determined in subjects who qualified for therapeutic administration of 131I-MIP-1095 with maximum tolerated activity examined in a dose-ascending manner (3 + 3 design methodology). Disease outcomes including prostate-specific antigen (PSA) change, tumor response, survival, and circulating tumor cell concentration were assessed. RESULTS: A total of 9 subjects with mCRPC were included in this study. On the basis of dosimetry results, 5 of 9 patients were treated: 3 in cohort 1 (50 mCi) and 2 in cohort 2 (75 mCi). Accrual stopped at the cohort 2 activity level in response to the US Food and Drug Administration mandate for 131I-MIP-1095 manufacturing concerns. Parotid/salivary glands (3.5 Gy/Bq), liver (2.2 Gy/Bq), kidneys (1.3 Gy/Bq), and spleen (0.7 Gy/Bq) demonstrated the greatest extent of 131I-MIP-1095 exposure. There were no deaths, serious adverse events, or drug discontinuations due to treatment-emergent adverse events. Grade 1-2 thrombocytopenia, anemia, leukopenia, and dry mouth most commonly occurred. One subject (33.3%) exhibited maximum decline for the PSA response of 50% or greater. CONCLUSION: 131I-MIP-1095 demonstrated favorable dosimetry, biodistribution, and safety, as well as a modest PSA response supporting further investigation for treatment of men with mCRPC.Clinical Trial Registration: ClinicalTrials.gov identifier: NCT03030885, Registered January 25, 2017 (https://clinicaltrials.gov/ct2/show/NCT03030885).


Assuntos
Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Antineoplásicos/efeitos adversos , Radioisótopos do Iodo/efeitos adversos , Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Compostos Radiofarmacêuticos/efeitos adversos , Distribuição Tecidual , Resultado do Tratamento
3.
J Nucl Med ; 64(11): 1779-1787, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37652541

RESUMO

A single-institution prospective pilot clinical trial was performed to demonstrate the feasibility of combining [177Lu]Lu-PSMA-617 radiopharmaceutical therapy (RPT) with stereotactic body radiotherapy (SBRT) for the treatment of oligometastatic castration-sensitive prostate cancer. Methods: Six patients with 9 prostate-specific membrane antigen (PSMA)-positive oligometastases received 2 cycles of [177Lu]Lu-PSMA-617 RPT followed by SBRT. After the first intravenous infusion of [177Lu]Lu-PSMA-617 (7.46 ± 0.15 GBq), patients underwent SPECT/CT at 3.2 ± 0.5, 23.9 ± 0.4, and 87.4 ± 12.0 h. Voxel-based dosimetry was performed with calibration factors (11.7 counts per second/MBq) and recovery coefficients derived from in-house phantom experiments. Lesions were segmented on baseline PSMA PET/CT (50% SUVmax). After a second cycle of [177Lu]Lu-PSMA-617 (44 ± 3 d; 7.50 ± 0.10 GBq) and an interim PSMA PET/CT scan, SBRT (27 Gy in 3 fractions) was delivered to all PSMA-avid oligometastatic sites, followed by post-PSMA PET/CT. RPT and SBRT voxelwise dose maps were scaled (α/ß = 3 Gy; repair half-time, 1.5 h) to calculate the biologically effective dose (BED). Results: All patients completed the combination therapy without complications. No grade 3+ toxicities were noted. The median of the lesion SUVmax as measured on PSMA PET was 16.8 (interquartile range [IQR], 11.6) (baseline), 6.2 (IQR, 2.7) (interim), and 2.9 (IQR, 1.4) (post). PET-derived lesion volumes were 0.4-1.7 cm3 The median lesion-absorbed dose (AD) from the first cycle of [177Lu]Lu-PSMA-617 RPT (ADRPT) was 27.7 Gy (range, 8.3-58.2 Gy; corresponding to 3.7 Gy/GBq, range, 1.1-7.7 Gy/GBq), whereas the median lesion AD from SBRT was 28.1 Gy (range, 26.7-28.8 Gy). Spearman rank correlation, ρ, was 0.90 between the baseline lesion PET SUVmax and SPECT SUVmax (P = 0.005), 0.74 (P = 0.046) between the baseline PET SUVmax and the lesion ADRPT, and -0.81 (P = 0.022) between the lesion ADRPT and the percent change in PET SUVmax (baseline to interim). The median for the lesion BED from RPT and SBRT was 159 Gy (range, 124-219 Gy). ρ between the BED from RPT and SBRT and the percent change in PET SUVmax (baseline to post) was -0.88 (P = 0.007). Two cycles of [177Lu]Lu-PSMA-617 RPT contributed approximately 40% to the maximum BED from RPT and SBRT. Conclusion: Lesional dosimetry in patients with oligometastatic castration-sensitive prostate cancer undergoing [177Lu]Lu-PSMA-617 RPT followed by SBRT is feasible. Combined RPT and SBRT may provide an efficient method to maximize the delivery of meaningful doses to oligometastatic disease while addressing potential microscopic disease reservoirs and limiting the dose exposure to normal tissues.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Radiocirurgia , Masculino , Humanos , Compostos Radiofarmacêuticos/efeitos adversos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Prospectivos , Neoplasias de Próstata Resistentes à Castração/patologia , Dipeptídeos/uso terapêutico , Antígeno Prostático Específico , Compostos Heterocíclicos com 1 Anel/uso terapêutico , Castração , Lutécio/uso terapêutico
4.
J Nucl Med ; 64(5): 724-730, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36418168

RESUMO

Variations in human epidermal growth factor receptor 2 (HER2) expression between the primary tumor and metastases may contribute to drug resistance in HER2-positive (HER2+) metastatic esophagogastric cancer (mEGC). 89Zr-trastuzumab PET (HER2 PET) holds promise for noninvasive assessment of variations in HER2 expression and target engagement. The aim of this study was to describe HER2 PET findings in patients with mEGC. Methods: Patients with HER2+ mEGC were imaged with HER2 PET, 18F-FDG PET, and CT. Lesions were annotated using measurements (on CT) and maximum SUVs (on HER2 PET). Correlation of visualized disease burden among imaging modalities with clinical and pathologic characteristics was performed. Results: Thirty-three patients with HER2+ mEGC were imaged with HER2 PET and CT (12% esophageal, 64% gastroesophageal junction, and 24% gastric adenocarcinoma), 26 of whom were also imaged with 18F-FDG PET. More lesions were identified on 18F-FDG PET (median, 7 [range, 1-14]) than HER2 PET (median, 4 [range, 0-11]). Of the 8 lesions identified on HER2 but not on 18F-FDG PET, 3 (38%) were in bone and 1 was in the brain. Of the 68 lesions identified on 18F-FDG but not on HER2 PET, 4 (6%) were in bone and the remainder were in the lymph nodes (35, 51%) and liver (16, 24%). Of the 33 total patients, 23 (70%) were HER2 imaging-positive (≥50% of tumor load positive). Only 10 patients had 100% of the tumor load positive; 2 had 0% positive. When only patients receiving HER2-directed therapy as first-line treatment were considered (n = 13), median progression-free survival (PFS) therapy was not significantly different between HER2 imaging-positive and -negative patients. Median PFS for patients with at least 1 intense or very intense lesion (SUV ≥ 10) was 16 (95% CI: 11-not reached) mo (n = 7), compared with 12 (95% CI: 6.3-not reached) mo for patients without an intense or very intense lesion (n = 6) (P = 0.35). Conclusion: HER2 PET may identify heterogeneity of HER2 expression and allow assessment of lesions throughout the entire body. A potential application of HER2 PET is noninvasive evaluation of HER2 status including assessment of intrapatient disease heterogeneity not captured by standard imaging or single-site biopsies.


Assuntos
Neoplasias da Mama , Neoplasias Esofágicas , Neoplasias Gástricas , Humanos , Feminino , Trastuzumab , Projetos Piloto , Fluordesoxiglucose F18 , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Gástricas/metabolismo , Receptor ErbB-2/metabolismo
7.
EJNMMI Phys ; 8(1): 6, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469848

RESUMO

PURPOSE: The aim of this study was to evaluate the use of a Bayesian penalized likelihood reconstruction algorithm (Q.Clear) for 89Zr-immunoPET image reconstruction and its potential to improve image quality and reduce the administered activity of 89Zr-immunoPET tracers. METHODS: Eight 89Zr-immunoPET whole-body PET/CT scans from three 89Zr-immunoPET clinical trials were selected for analysis. On average, patients were imaged 6.3 days (range 5.0-8.0 days) after administration of 69 MBq (range 65-76 MBq) of [89Zr]Zr-DFO-daratumumab, [89Zr]Zr-DFO-pertuzumab, or [89Zr]Zr-DFO-trastuzumab. List-mode PET data was retrospectively reconstructed using Q.Clear with incremental ß-values from 150 to 7200, as well as standard ordered-subset expectation maximization (OSEM) reconstruction (2-iterations, 16-subsets, a 6.4-mm Gaussian transaxial filter, "heavy" z-axis filtering and all manufacturers' corrections active). Reduced activities were simulated by discarding 50% and 75% of original counts in each list mode stream. All reconstructed PET images were scored for image quality and lesion detectability using a 5-point scale. SUVmax for normal liver and sites of disease and liver signal-to-noise ratio were measured. RESULTS: Q.Clear reconstructions with ß = 3600 provided the highest scores for image quality. Images reconstructed with ß-values of 3600 or 5200 using only 50% or 25% of the original counts provided comparable or better image quality scores than standard OSEM reconstruction images using 100% of counts. CONCLUSION: The Bayesian penalized likelihood reconstruction algorithm Q.Clear improved the quality of 89Zr-immunoPET images. This could be used in future studies to improve image quality and/or decrease the administered activity of 89Zr-immunoPET tracers.

8.
Semin Radiat Oncol ; 31(1): 28-36, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33246633

RESUMO

Theranostics is a precision medicine discipline that integrates diagnostic nuclear medicine imaging with radionuclide therapy in a manner that provides both a tumor phenotype and personalized therapy to patients with cancer using radiopharmaceuticals aimed at the same target-specific biological pathway or receptor. The aim of quantitative nuclear medicine imaging is to plan the alpha or beta-emitting therapy based on an accurate 3-dimensional representation of the in-vivo distribution of radioactivity concentration within the tumor and normal organs/tissues in a noninvasive manner. In general, imaging may be either based on positron emission tomography (PET) or single photon emission computed tomography (SPECT) invariably in combination with X-ray CT (PET/CT; SPECT/CT) or, to a much lesser extent, MRI. PET and SPECT differ in terms of the radionuclides and physical processes that give rise to the emission of high energy photons, as well as the sets of technologies involved in their detection. Using a variety of standardized quantitative parameters, system calibration, patient preparation, imaging acquisition and reconstruction protocols, and image analysis protocols, an accurate quantification of the tracer distribution can be obtained, which helps prescribe the therapeutic dose for each patient.


Assuntos
Medicina Nuclear , Medicina de Precisão , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Tomografia Computadorizada de Emissão de Fóton Único/métodos
9.
Eur J Nucl Med Mol Imaging ; 47(13): 3047-3057, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32378020

RESUMO

PURPOSE: Paired imaging/therapy with radiolabeled somatostatin receptor (SSTR) antagonists is a novel approach in neuroendocrine tumors (NETs). The aim of this study was to compare tumor uptake of 68Ga-DOTA-JR11 and 177Lu-satoreotide tetraxetan (177Lu-DOTA-JR11) in patients with NETs. METHODS: As part of a prospective clinical trial, 20 patients with metastatic NETs underwent 68Ga-DOTA-JR11 PET/CT and serial imaging with 177Lu-satoreotide tetraxetan. PET/CT and SPECT/CT parameters for lesion uptake and absorbed dose of 177Lu-satoreotide tetraxetan in lesions were compared using linear regression analysis and Pearson correlation. RESULTS: A total of 95 lesions were analyzed on 68Ga-DOTA-JR11 PET/CT and 177Lu-satoreotide tetraxetan SPECT/CT. SUVs and tumor-to-normal-tissue ratios on PET/CT and SPECT/CT were significantly correlated (p < 0.01), but the degree of correlation was modest with Pearson correlation coefficients ranging from 0.3 to 0.7. Variation in intrapatient lesional correlation was observed. Nevertheless, in all patients, the lesion SUVpeak uptake ratio for 177Lu-satoreotide tetraxetan vs. 68Ga-DOTA-JR11 was high; even in those with low uptake on 68Ga-DOTA-JR11 PET/CT (SUVpeak ≤ 10), a ratio of 8.0 ± 5.2 was noted. Correlation of SUVpeak of 68Ga-DOTA-JR11 with projected 177Lu-satoreotide tetratexan-absorbed dose (n = 42) was modest (r = 0.5, p < 0.01), while excellent correlation of SUVpeak of 177Lu-satoreotide tetraxetan with projected 177Lu-satoreotide tetraxetan-absorbed dose was noted (r = 0.9, p < 0.0001). CONCLUSION: Our study shows that 68Ga-DOTA-JR11 PET can be used for patient selection and PRRT and that low tumor uptake on PET should not preclude patients from treatment with 177Lu-satoreotide tetraxetan. The ability to use single time-point SPECT/CT for absorbed dose calculations could facilitate dosimetry regimens, save costs, and improve patient convenience.


Assuntos
Tumores Neuroendócrinos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioisótopos de Gálio , Compostos Heterocíclicos com 1 Anel , Humanos , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/radioterapia , Octreotida/uso terapêutico , Estudos Prospectivos , Receptores de Peptídeos
10.
Radiology ; 295(3): 606-615, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32255416

RESUMO

Background Current measurements of multiple myeloma disease burden are suboptimal. Daratumumab is a monoclonal antibody that targets CD38, an antigen expressed on nearly all myeloma cells. Purpose To demonstrate preclinical and first-in-human application of an antibody composed of the native daratumumab labeled with the positron-emitting radionuclide zirconium 89 (89Zr) through the chelator deferoxamine (DFO), or 89Zr-DFO-daratumumab, for immunologic PET imaging of multiple myeloma. Materials and Methods 89Zr-DFO-daratumumab was synthesized by conjugating 89Zr to daratumumab with DFO. A murine xenograft model using CD38-positive OPM2 multiple myeloma cells was used to evaluate CD38-specificity of 89Zr-DFO-daratumumab. Following successful preclinical imaging, a prospective phase I study of 10 patients with multiple myeloma was performed. Study participants received 74 MBq (2 mCi) of intravenous 89Zr-DFO-daratumumab. Each participant underwent four PET/CT scans over the next 8 days, as well as blood chemistry and whole-body counts, to determine safety, tracer biodistribution, pharmacokinetics, and radiation dosimetry. Because 89Zr has a half-life of 78 hours, only a single administration of tracer was needed to obtain all four PET/CT scans. Results 89Zr-DFO-daratumumab was synthesized with radiochemical purity greater than 99%. In the murine model, substantial bone marrow uptake was seen in OPM2 mice but not in healthy mice, consistent with CD38-targeted imaging of OPM2 multiple myeloma cells. In humans, 89Zr-DFO-daratumumab was safe and demonstrated acceptable dosimetry. 89Zr-DFO-daratumumab uptake was visualized at PET in sites of osseous myeloma. Conclusion These data demonstrate successful CD38-targeted immunologic PET imaging of multiple myeloma in a murine model and in humans. © RSNA, 2020 Online supplemental material is available for this article.


Assuntos
ADP-Ribosil Ciclase 1 , Neoplasias Ósseas/diagnóstico por imagem , Modelos Animais de Doenças , Glicoproteínas de Membrana , Mieloma Múltiplo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Animais , Anticorpos Monoclonais , Desferroxamina , Xenoenxertos , Humanos , Estudos Prospectivos , Sensibilidade e Especificidade , Carga Tumoral , Zircônio
11.
Clin Cancer Res ; 26(13): 3110-3116, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32245901

RESUMO

PURPOSE: We performed a first-in-human clinical trial. The aim of this study was to determine safety and feasibility of PET imaging with 18F-PARPi in patients with head and neck cancer. PATIENTS AND METHODS: Eleven patients with newly diagnosed or recurrent oral and oropharyngeal cancer were injected with 18F-PARPi (331 ± 42 MBq), and dynamic PET/CT imaging was performed between 0 and 25 minutes postinjection. Static PET/CT scans were obtained at 30, 60, and 120 minutes postinjection. Blood samples for tracer concentration and metabolite analysis were collected. Blood pressure, ECG, oxygen levels, clinical chemistry, and complete blood count were obtained before and after tracer administration. RESULTS: 18F-PARPi was well-tolerated by all patients without any safety concerns. Of the 11 patients included in the analysis, 18F-PARPi had focal uptake in all primary lesions (n = 10, SUVmax = 2.8 ± 1.2) and all 18F-FDG-positive lymph nodes (n = 34). 18F-PARPi uptake was seen in 18F-FDG-negative lymph nodes of 3 patients (n = 6). Focal uptake of tracer in primary and metastatic lesions was corroborated by CT alone or in combination with 18F-FDG. The overall effective dose with 18F-PARPi PET was 3.9 mSv - 5.2 mSv, contrast was high [SUVmax(lesion)/SUVmax(trapezius muscle) = 4.5] and less variable than 18F-FDG when compared with the genioglossus muscle (1.3 vs. 6.0, P = 0.001). CONCLUSIONS: Imaging of head and neck cancer with 18F-PARPi is feasible and safe. 18F-PARPi detects primary and metastatic lesions, and retention in tumors is longer than in healthy tissues.


Assuntos
Fluordesoxiglucose F18 , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Imuno-Histoquímica , Masculino , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerases/genética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos , Distribuição Tecidual
12.
J Nucl Med ; 61(4): 512-519, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586002

RESUMO

Immunotherapy is becoming the mainstay for treatment of a variety of malignancies, but only a subset of patients responds to treatment. Tumor-infiltrating CD8-positive (CD8+) T lymphocytes play a central role in antitumor immune responses. Noninvasive imaging of CD8+ T cells may provide new insights into the mechanisms of immunotherapy and potentially predict treatment response. We are studying the safety and utility of 89Zr-IAB22M2C, a radiolabeled minibody against CD8+ T cells, for targeted imaging of CD8+ T cells in patients with cancer. Methods: The initial dose escalation phase of this first-in-humans prospective study included 6 patients (melanoma, 1; lung, 4; hepatocellular carcinoma, 1). Patients received approximately 111 MBq (3 mCi) of 89Zr-IAB22M2C (at minibody mass doses of 0.2, 0.5, 1.0, 1.5, 5, or 10 mg) as a single dose, followed by PET/CT scans at approximately 1-2, 6-8, 24, 48, and 96-144 h after injection. Biodistribution in normal organs, lymph nodes, and lesions was evaluated. In addition, serum samples were obtained at approximately 5, 30, and 60 min and later at the times of imaging. Patients were monitored for safety during infusion and up to the last imaging time point. Results:89Zr-IAB22M2C infusion was well tolerated, with no immediate or delayed side effects observed after injection. Serum clearance was typically biexponential and dependent on the mass of minibody administered. Areas under the serum time-activity curve, normalized to administered activity, ranged from 1.3 h/L for 0.2 mg to 8.9 h/L for 10 mg. Biodistribution was dependent on the minibody mass administered. The highest uptake was always in spleen, followed by bone marrow. Liver uptake was more pronounced with higher minibody masses. Kidney uptake was typically low. Prominent uptake was seen in multiple normal lymph nodes as early as 2 h after injection, peaking by 24-48 h after injection. Uptake in tumor lesions was seen on imaging as early as 2 h after injection, with most 89Zr-IAB22M2C-positive lesions detectable by 24 h. Lesions were visualized early in patients receiving treatment, with SUV ranging from 5.85 to 22.8 in 6 target lesions. Conclusion:89Zr-IAB22M2C imaging is safe and has favorable kinetics for early imaging. Biodistribution suggests successful targeting of CD8+ T-cell-rich tissues. The observed targeting of tumor lesions suggests this may be informative for CD8+ T-cell accumulation within tumors. Further evaluation is under way.


Assuntos
Antígenos CD8/imunologia , Imunoconjugados/química , Imunoconjugados/farmacocinética , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radioisótopos , Zircônio , Adulto , Idoso , Idoso de 80 Anos ou mais , Transporte Biológico , Feminino , Humanos , Imunoconjugados/sangue , Imunoconjugados/metabolismo , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Distribuição Tecidual
13.
Clin Cancer Res ; 25(23): 7014-7023, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31540979

RESUMO

PURPOSE: In patients with cancer who have an abnormal biomarker finding, the source of the biomarker in the bloodstream must be located for confirmation of diagnosis, staging, and therapy planning. We evaluated if immuno-PET with the radiolabeled high-affinity antibody HuMab-5B1 (MVT-2163), binding to the cancer antigen CA19-9, can identify the source of elevated biomarkers in patients with pancreatic cancer. PATIENTS AND METHODS: In this phase I dose-escalating study, 12 patients with CA19-9-positive metastatic malignancies were injected with MVT-2163. Within 7 days, all patients underwent a total of four whole-body PET/CT scans. A diagnostic CT scan was performed prior to injection of MVT-2163 to correlate findings on MVT-2163 PET/CT. RESULTS: Immuno-PET with MVT-2163 was safe and visualized known primary tumors and metastases with high contrast. In addition, radiotracer uptake was not only observed in metastases known from conventional CT, but also seen in subcentimeter lymph nodes located in typical metastatic sites of pancreatic cancer, which were not abnormal on routine clinical imaging studies. A significant fraction of the patients demonstrated very high and, over time, increased uptake of MVT-2163 in tumor tissue, suggesting that HuMab-5B1 labeled with beta-emitting radioisotopes may have the potential to deliver therapeutic doses of radiation to cancer cells. CONCLUSIONS: Our study shows that the tumor antigen CA19-9 secreted to the circulation can be used for sensitive detection of primary tumors and metastatic disease by immuno-PET. This significantly broadens the number of molecular targets that can be used for PET imaging and offers new opportunities for noninvasive characterization of tumors in patients.


Assuntos
Adenocarcinoma/secundário , Anticorpos Monoclonais Humanizados/farmacocinética , Biomarcadores Tumorais/sangue , Antígeno CA-19-9/imunologia , Neoplasias Pancreáticas/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/farmacocinética , Adenocarcinoma/sangue , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/imunologia , Idoso , Anticorpos Monoclonais Humanizados/administração & dosagem , Biomarcadores Tumorais/imunologia , Antígeno CA-19-9/sangue , Antígeno CA-19-9/química , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/imunologia , Prognóstico , Compostos Radiofarmacêuticos/administração & dosagem , Distribuição Tecidual , Zircônio/química
14.
Clin Cancer Res ; 25(23): 6939-6947, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31439583

RESUMO

PURPOSE: Radiolabeled somatostatin receptor 2 (SSTR2) antagonists have shown higher tumor uptake and tumor-to-organ ratios than somatostatin agonists in preclinical models of neuroendocrine tumors (NETs). We performed a phase I study to evaluate the safety and efficacy of SSTR2 antagonist 177Lu-satoreotide tetraxetan. PATIENTS AND METHODS: Twenty patients with advanced SSTR2-positive NETs were treated with 177Lu-satoreotide tetraxetan. Patients first underwent a dosimetry study with 177Lu-satoreotide tetraxetan to determine the therapeutic activity that could be safely administered. This activity was split into two equal cycles to be delivered 3 months apart. The maximum activity was 7.4 GBq per cycle. RESULTS: Of 20 patients with NETs (one lung, seven small bowel, nine pancreatic, one gastric, one rectal, one kidney; mean prior treatments: three), six received one cycle of 177Lu- satoreotide tetraxetan and 14 received two cycles. Hematologic toxicity after cycle 1 was mild-moderate and reversed before cycle 2. However, grade 4 hematologic toxicity occurred in four of seven (57%) patients after cycle 2 of 177Lu-satoreotide tetraxetan. The study was suspended, and the protocol modified to limit the cumulative absorbed bone marrow dose to 1 Gy and to reduce prescribed activity for cycle 2 by 50%. The best overall response rate was 45% [5% complete response (1/20), 40% partial response (8/20)]; with 40% stable disease (8/20) and 15% progression of disease (3/20). Median progression-free survival (PFS) was 21.0 months (95% CI, 13.6-NR). CONCLUSIONS: In this trial of heavily treated NETs, preliminary data are promising for the use of 177Lu-satoreotide tetraxetan. Additional studies are ongoing to determine optimal therapeutic dose/schedule.


Assuntos
Compostos Heterocíclicos com 1 Anel/química , Lutécio/uso terapêutico , Tumores Neuroendócrinos/radioterapia , Octreotida/análogos & derivados , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Receptores de Somatostatina/antagonistas & inibidores , Adulto , Idoso , Quelantes/química , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Octreotida/uso terapêutico , Prognóstico , Adulto Jovem
15.
J Nucl Med ; 60(12): 1825-1832, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31147401

RESUMO

89Zr-immuno-PET is a promising noninvasive clinical tool that measures target engagement of monoclonal antibodies (mAbs) to predict toxicity in normal tissues and efficacy in tumors. Quantification of 89Zr-immuno-PET will need to move beyond SUVs, since total uptake may contain a significant non-target-specific contribution. Nonspecific uptake is reversible (e.g., blood volume) or irreversible (due to 89Zr-residualization after mAb degradation). The aim of this study was to assess nonspecific uptake in normal tissues as a first critical step toward quantification of target engagement in normal tissues and tumors using 89Zr-immuno-PET. Methods: Data from clinical studies with 4 89Zr-labeled intact IgG1 antibodies were collected, resulting in a total of 128 PET scans (1-7 d after injection from 36 patients: 89Zr-obinutuzumab [n = 9], 89Zr-cetuximab [n = 7], 89Zr-huJ591 [n = 10], and 89Zr-trastuzumab [n = 10] [denoted as 89Zr-anti-CD20, 89Zr-anti-EGFR, 89Zr-anti-PSMA and 89Zr-anti-HER2, respectively]). Nonspecific uptake was defined as uptake measured in tissues without known target expression. Patlak graphical evaluation of transfer constants was used to estimate the reversible (Vt ) and irreversible (Ki ) contributions to the total measured uptake for the kidney, liver, lung, and spleen. Baseline values were calculated per tissue combining all mAbs without target expression (kidney: 89Zr-anti-CD20, 89Zr-anti-EGFR, and 89Zr-anti-HER2; liver: 89Zr-anti-CD20; lung: 89Zr-anti-CD20, 89Zr-anti-EGFR, and 89Zr-anti-PSMA; spleen: 89Zr-anti-EGFR and 89Zr-anti-HER2). Results: For the kidney, liver, lung, and spleen, baseline Vt was 0.20, 0.24, 0.09, and 0.24 mL⋅cm-3, respectively, and baseline Ki was 0.7, 1.1, 0.2 and 0.5 µL⋅g-1⋅h-1, respectively. For 89Zr-anti-PSMA, a 4-fold higher Ki was observed for the kidney, indicating target engagement. In this case, nonspecific uptake accounted for 66%, 34%, and 22% of the total signal in the kidney at 1, 3, and 7 d after injection, respectively. Conclusion: This study shows that nonspecific uptake of mAbs for tissues without target expression can be quantified using 89Zr-immuno-PET at multiple time points. These results form a crucial base for measurement of target engagement by therapeutic antibodies in vivo with 89Zr-immuno-PET. For future studies, a pilot phase including at least 3 scans at 1 or more days after injection is required to assess nonspecific uptake as a function of time, to optimize study design for detection of target engagement.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos , Zircônio , Fluordesoxiglucose F18 , Humanos
16.
Mol Pharm ; 16(7): 3083-3090, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31117485

RESUMO

A six-transmembrane epithelial antigen of prostate-1 (STEAP1) is a newly identified target in prostate cancer. The use of radio-labeled STEAP1-targeting antibodies with positron emission tomography (PET) may allow for detection of sites of metastatic prostate cancer and may refine patient selection for antigen-directed therapies. This was a prospective study in seven patients with metastatic castration-resistant prostate cancer who had at least one archival biopsy that was STEAP1-positive by immunohistochemistry. Patients received intravenous injections of ∼185 MBq and 10 mg of [89Zr]Zr-DFO-MSTP2109A, a humanized IgG1 monoclonal antibody directed against STEAP1. PET/CT images, blood samples, and whole-body counts were monitored longitudinally in six patients. Here, we report on safety, biodistribution, pharmacokinetics, dose estimates to normal tissues, and initial tumor targeting for this group of patients. There was no significant acute or subacute toxicity. Favorable biodistribution and enhanced lesion uptake (in both bone and soft tissue) were observed on imaging using a mass of 10 mg of DFO-MSTP2109A. The best lesion discrimination was seen at the latest imaging time, a median of 6 days postadministration. Pharmacokinetics showed a median serum T1/2 ß of 198 h, volume of central compartment of 3.54 L (similar to plasma volume), and clearance of 19.7 mL/h. The median biologic T1/2 for whole-body retention was 469 h. The highest mean absorbed doses to normal organs (mGy/MBq) were 1.18, 1.11, 0.78, 0.73, and 0.71 for liver, heart wall, lung, kidney, and spleen, respectively. Excellent targeting of metastatic prostate sites in both bone and soft tissue was observed, with an optimal imaging time of 6 days postadministration. The liver and heart were the normal organs that experienced the highest absorbed doses. The pharmacokinetics were similar to other antibodies without major cross-reactivity with normal tissues. A more detailed analysis of lesion targeting in a larger patient population with correlation to immunohistology and standard imaging modalities has been reported.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Antígenos de Neoplasias/imunologia , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário , Oxirredutases/imunologia , Neoplasias de Próstata Resistentes à Castração/diagnóstico por imagem , Radioisótopos/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Neoplasias de Tecidos Moles/diagnóstico por imagem , Neoplasias de Tecidos Moles/secundário , Zircônio/farmacocinética , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/uso terapêutico , Reações Cruzadas/imunologia , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/metabolismo , Imunoglobulina G/uso terapêutico , Concentração Inibidora 50 , Injeções Intravenosas , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Estudos Prospectivos , Neoplasias de Próstata Resistentes à Castração/sangue , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Radioisótopos/administração & dosagem , Compostos Radiofarmacêuticos/administração & dosagem , Distribuição Tecidual , Zircônio/administração & dosagem
17.
J Nucl Med ; 60(11): 1517-1523, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31053681

RESUMO

Six-transmembrane epithelial antigen of prostate-1 (STEAP1) is a relatively newly identified target in prostate cancer. We evaluated the ability of PET/CT with 89Zr-DFO-MSTP2109A, an antibody that recognizes STEAP1, to detect lesions in patients with metastatic castration-resistant prostate cancer (mCRPC). Methods: Nineteen mCRPC patients were prospectively imaged using approximately 185 MBq/10 mg of 89Zr-DFO-MSTP2109A. 89Zr-DFO-MSTP2109A PET/CT images obtained 4-7 d after injection were compared with bone and CT scans. Uptake in lesions was measured. Fifteen patients were treated with an antibody-drug conjugate (ADC) based on MSTP2109A; ADC treatment-related data were correlated with tumor uptake by PET imaging. Bone or soft-tissue biopsy samples were evaluated. Results: No significant toxicity occurred. Excellent uptake was observed in bone and soft-tissue disease. Median SUVmax was 20.6 in bone and 16.8 in soft tissue. Sixteen of 17 lesions biopsied were positive on 89Zr-DFO-MSTP2109A, and all sites were histologically positive (1 on repeat biopsy). Bayesian analysis resulted in a best estimate of 86% of histologically positive lesions being true-positive on imaging (95% confidence interval, 75%-100%). There was no correlation between SUVmax tumor uptake and STEAP1 immunohistochemistry, survival after ADC treatment, number of ADC treatment cycles, or change in prostate-specific antigen level. Conclusion:89Zr-DFO-MSTP2109A is well tolerated and shows localization in mCRPC sites in bone and soft tissue. Given the high SUV in tumor and localization of a large number of lesions, this reagent warrants further exploration as a companion diagnostic in patients undergoing STEAP1-directed therapy.


Assuntos
Antígenos de Neoplasias/imunologia , Imunoconjugados/imunologia , Oxirredutases/imunologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias de Próstata Resistentes à Castração/diagnóstico por imagem , Neoplasias de Próstata Resistentes à Castração/patologia , Radioisótopos , Zircônio , Idoso , Idoso de 80 Anos ou mais , Humanos , Imunoconjugados/farmacocinética , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Radiometria , Distribuição Tecidual
18.
Eur J Nucl Med Mol Imaging ; 46(3): 677-685, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30374529

RESUMO

PURPOSE: Somatostatin receptor antagonists have shown promise for imaging neuroendocrine tumors (NETs) in preclinical studies, but clinical data is still very limited. In this study, we assess the feasibility of using the novel somatostatin antagonist 68Ga-DOTA-JR11 for PET imaging of NETs. METHODS: Twenty patients with advanced NETs underwent whole-body PET/CT imaging 60 min after injection of 169 MBq (median) 68Ga-DOTA-JR11 as part of a prospective study. Volumes of interest were drawn around up to four 68Ga-DOTA-JR11-avid lesions per patient (with uptake greater than liver) and standardized uptake values were estimated. Additionally, target-to-normal tissue ratios were calculated. A subset of six patients had additional imaging (25-min dynamic scan of the upper abdomen including, at least partly, cardiac left ventricle, liver, spleen, and kidney, and a whole-body PET/CT scan at 30 min post-injection) to determine the time course of tracer distribution and facilitate radiation dose estimates. Absorbed doses were calculated using OLINDA/EXM 1.0. RESULTS: In contrast to the known biodistribution of somatostatin receptor agonists, little or no uptake above background was seen in the pituitary gland, spleen, adrenals, and uninvolved liver; e.g., median spleen SUVmean 1.4 (range: 0.7-1.8), liver SUVmean 1.1 (0.7-1.9). A total of 42 tumor lesions were analyzed with median SUVmax 13.0 (range: 2.9-94), TNR blood 9.3 (1.8-87), TNR spleen 4.9 (1.9-48), TNR kidney 2.2 (0.52-28), and TNR liver 10.5 (2.3-107). Tumor uptake reached plateau levels by 20-30 min post-injection. The highest absorbed dose estimates (mGy/MBq) to normal tissues were: urinary bladder wall (0.30; SD 0.06) and kidneys (0.050; SD 0.013). The effective dose (ICRP 103) was 0.022 (SD 0.003) mSv/MBq. CONCLUSIONS: 68Ga-DOTA-JR11 demonstrated rapid tumor uptake, high tumor/background ratios, and rapid clearance from blood. The low liver background is advantageous and may facilitate detection of liver metastases. Dosimetric data compare favorably with published data for 68Ga-DOTATATE and 68Ga-DOTATOC.


Assuntos
Radioisótopos de Gálio/farmacocinética , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Doses de Radiação , Adulto , Idoso , Estudos de Viabilidade , Feminino , Radioisótopos de Gálio/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Tumores Neuroendócrinos/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/efeitos adversos , Radiometria , Segurança , Distribuição Tecidual , Adulto Jovem
19.
Q J Nucl Med Mol Imaging ; 63(2): 191-198, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27171605

RESUMO

BACKGROUND: The current study aims to assess the safety, pharmacokinetics, feasibility, and reproducibility of immunoPET imaging with copper-64 (64Cu) trastuzumab. METHODS: An IV injection of 296-370 MBq/5 mg 64Cu-trastuzumab was administered between 1 to 4 hours after routine trastuzumab treatment. Whole-body PET scans were performed immediately post-injection and at 24 hours post-injection. Serial pharmacokinetics were performed. Of 11 patients (median age of 52; range of 31-61), 8 underwent a repeat study with 64Cu-trastuzumab to assess image and pharmacokinetic reproducibility. Patients were monitored for toxicity. RESULTS: Patients experienced no allergic reactions or significant adverse effects from 64Cu-trastuzumab. Eight patients successfully completed a repeat 64Cu-trastuzumab study, with acceptable reproducibility of both the biodistribution and pharmacokinetic clearance. Study 1 versus study 2 showed similar serum concentration post-injection (mean 42.4±7.8 %ID/L vs. 44.7±12.6 %ID/L) and similar T1/2 (single exponential 46.1 vs. 44.2 hours), P>0.5. The volume of distribution (median 2.50 L) was in the range reported for trastuzumab and close to the estimated plasma volume of 2.60 L. Of 11 patients, two had 64Cu-trastuzumab localization corresponding to known tumor sites - one in liver and one in breast. CONCLUSIONS: Preliminary results suggest that scanning with 64Cu-trastuzumab is feasible, safe, and reproducible. Tumor uptake of 64Cu-trastuzumab was observed, but tumor detection exhibited low sensitivity in this study in which imaging was performed in the presence of trastuzumab therapy.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Radioisótopos de Cobre , Tomografia por Emissão de Pósitrons/métodos , Trastuzumab , Adulto , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Receptor ErbB-2/metabolismo , Reprodutibilidade dos Testes , Distribuição Tecidual , Trastuzumab/farmacocinética
20.
EJNMMI Res ; 8(1): 20, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29508107

RESUMO

BACKGROUND: I-124 codrituzumab (aka GC33), an antibody directed at Glypican 3, was evaluated in patients with hepatocellular carcinoma (HCC). Fourteen patients with HCC underwent baseline imaging with I-124 codrituzumab (~ 185 MBq, 10 mg). Seven of these patients undergoing sorafenib/immunotherapy with 2.5 or 5 mg/kg of cold codrituzumab had repeat imaging, with co-infusion of I-124 codrituzumab, as part of their immunotherapy treatment. Three patients who progressed while on sorafenib/immunotherapy were re-imaged after a 4-week washout period to assess for the presence of antigen. Serial positron emission tomography (PET) imaging and pharmacokinetics were performed following I-124 codrituzumab. An ELISA assay was used to determine "cold" codrituzumab serum pharmacokinetics and compare it to that of I-124 codrituzumab. Correlation of imaging results was performed with IHC. Short-term safety assessment was also evaluated. RESULTS: Thirteen patients had tumor localization on baseline I-124 codrituzumab; heterogeneity in tumor uptake was noted. In three patients undergoing repeat imaging while on immunotherapy/sorafenib, evidence of decreased I-124 codrituzumab uptake was noted. All three patients who underwent imaging after progression while on immunotherapy continued to have I-124 codrituzumab tumor uptake. Pharmacokinetics of I-124 codrituzumab was similar to that of other intact IgG. No significant adverse events were observed related to the I-124 codrituzumab. CONCLUSIONS: I-124 codrituzumab detected tumor localization in most patients with HCC. Pharmacokinetics was similar to that of other intact iodinated humanized IgG. No visible cross-reactivity with normal organs was observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...